132 research outputs found

    Capture de mouvement par mesure de distances dans un réseau corporel hétérogène

    Get PDF
    La capture de mouvement ambulatoire est un sujet en plein essor pour des applications aussi diverses que le suivi des personnes âgées, l'assistance des sportifs de haut niveau, la réhabilitation fonctionnelle, etc. Ces applications exigent que le mouvement ne soit pas contraint par un système externe, qu il puisse être réalisé dans différentes situations, y compris en extérieur, que l équipement soit léger et à un faible coût, qu il soit réellement ambulatoire et sans procédure complexe de calibration.Actuellement, seuls les systèmes utilisant un exosquelette ou bien des modules inertiels (souvent combinés avec des modules magnétiques) permettent d'effectuer de la capture de mouvement de façon ambulatoire. Le poids de l exosquelette est très important et il impose des contraintes sur les mouvements de la personne, ce qui le rend inutilisable pour certaines applications telles que le suivi de personnes âgées. La technologie inertielle est plus légère. Elle permet d'effectuer la capture du mouvement sans contrainte sur l espace de mesure ou sur les mouvements réalisés. Par contre, elle souffre de dérives des gyromètres, et le système doit être recalibré.L'objectif de cette thèse est de développer un système de capture de mouvement de chaînes articulées, bas-coût et temps réel, réellement ambulatoire, ne nécessitant pas d'infrastructure de capture spécifique, permettant une utilisation dans de nombreux domaines applicatifs (rééducation, sport, loisirs, etc.).On s'intéresse plus particulièrement à des mesures intra-corporelles. Ainsi, tous les capteurs sont placés sur le corps et aucun dispositif externe n'est utilisé. Outre un démonstrateur final permettant de valider l'approche proposée, on s'astreint à développer également des outils qui permettent de dimensionner le système en termes de technologie, nombre et position des capteurs, mais également à évaluer différents algorithmes de fusion des données. Pour ce faire, on utilise la borne de Cramer-Rao.Le sujet est donc pluridisciplinaire. Il traite des aspects de modélisation et de dimensionnement de systèmes hybrides entièrement ambulatoires. Il étudie des algorithmes d'estimation adaptés au domaine de la capture de mouvement corps entier en traitant les problématiques d'observabilité de l'état et en tenant compte des contraintes biomécaniques pouvant être appliquées. Ainsi, un traitement adapté permet de reconstruire en temps réel la posture du sujet à partir de mesures intra-corporelles, la source étant également placée sur le corps.Ambulatory motion capture is of great interest for applications ranging for the monitoring of elderly people, sporty performances monitoring, functional rehabilitation, etc. These applications require that the movement is not constrained by an external system, that it can be performed in different situations, including outdoor environment. It requires lightweight and low cost equipment; it must be truly ambulatory without complex process of calibration.Currently, only systems using an exoskeleton or inertial modules (often combined with magnetic modules) can be used in such situations. Unfortunately, the exoskeleton weight is not affordable and it imposes constraints on the movements of the person, which makes it unusable for certain applications such as monitoring of the elderly.Inertial technology is lighter. Itcan be used for the capture of movement without constraints on the capture space or on the movements. However, it suffers from gyros drift, and the system must be recalibrated.The objective of this thesis is to develop a system of motion capture for an articulated chain, low-cost, real-time truly ambulatory that does not require specific capture infrastructure, that can be used in many application fields (rehabilitation, sport, leisure, etc.).We focus on intra-corporal measurements. Thus, all sensors are placed on the body and no external device is used. In addition to a final demonstrator to validate the proposed approach, we also develop tools to evaluate the system in terms of technology, number and position of sensors, but also to evaluate different algorithms for data fusion. To do this, we use the Cramer-Rao lower bound. \\The subject is multidisciplinary. It addresses aspects of modelling and design of fully ambulatory hybrid systems. It studies estimation algorithms adapted to the field of motion capture of a whole body by considering the problem of observability of the state and taking into account the biomechanical constraints that can be taken into account. Thus, with an appropriate treatment, the pose of a subject can be reconstructed in real time from intra-body measurements.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Optimal and robust control for a small-area FLL

    Get PDF
    International audienceFine-grain Dynamic Voltage and Frequency Scaling (DVFS) is becoming a requirement for Globally-Asynchronous Locally-Synchronous (GALS) architectures. However, the area overhead of adding voltage and frequency control engines in each voltage and frequency island must be taken into account to optimize the circuit. A small-area fast-reprogrammable Frequency-Locked Loop (FLL) engine is a suited option, since its implementation in 32nm represents 0.0016mm 2, being 4 to 20 times smaller than classical techniques used such as a Phase-Locked Loop (PLL) in the same technology. Another relevant aspect with respect to the FLL is the control design, which must be suited for low area hardware. In this paper, an analytical model of the system is deduced from accurate Spice simulations. It also takes into account the delay introduced by the sensor. From this model, an optimal and robust control law with a minimum implementation area is developed. The closed-loop system stability is also ensured

    Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-helicopter

    Get PDF
    International audienceA quaternion-based feedback is developed for the attitude stabilization of rigid bodies. The control design takes into account a priori input bounds and is based on nested saturation approach. It results in a very simple controller suitable for an embedded use with low computational resources available. The proposed method is generic not restricted to symmetric rigid bodies and does not require the knowledge of the inertia matrix of the body. The control law can be tuned to force closed-loop trajectories to enter in some a priori fixed neighborhood of the origin in a finite time and remain thereafter. The global stability is guaranteed in the case where angular velocities sensors have limited measurement range. The control law is experimentally applied to the attitude stabilization of a quadrotor mini-helicopter

    Architecture and Control of a Digital Frequency-Locked Loop for Fine-Grain Dynamic Voltage and Frequency Scaling in Globally Asynchronous Locally Synchronous Structures

    Get PDF
    International audienceA small area fast-reprogrammable Digital Frequency-Locked Loop (DFLL) engine is presented as a solution for the Dynamic Voltage and Frequency Scaling (DVFS) circuitry in Globally Asynchronous Locally Synchronous (GALS) architectures implemented in 32 nm CMOS technology. The DFLL control is designed so that the closed-loop system is able to cope with process variability while it rejects temperature changes and supply voltage slow variations. Therefore the DFLL is made of three main blocks, namely a Digitally Controlled Oscillator (DCO), a "sensor" that measures the frequency of the signal at the output of the DCO and a controller. A strong emphasis is set on the loop filter architecture choice and the tuning of its parameters. An analytical model of the DCO is deduced from accurate Spice simulations. The delay introduced by the sensor is also taken into account to design. From these models, an optimal and robust controller with a minimum implementation area is developed. Here, "optimal" means that the controller is computed via the minimization of a given criterion while the "robustness" capability ensures that the closed-loop system is tolerant to process and temperature variations in a given range. Therefore, performances of the closed-loop system are ensured whatever the system characteristics are in a given range

    Energy Management via PI Control for Data Parallel Applications with Throughput Constraints

    Get PDF
    International audienceThis paper presents a new proportional-integral (PI) controller that sets the operating point of computing tiles in a system on chip (SoC). We address data-parallel applications with throughput constraints. The controller settings are investigated for application configurations with different QoS levels and different buffer sizes. The control method is evaluated on a test chip with four tiles executing a realistic HMAX object recognition application. Experimental results suggest that the proposed controller outperforms the state-of-the-art results: it attains, on average, 25% less number of frequency switches and has slightly higher energy savings. The reduction in number of frequency switches is important because it decreases the involved overhead. In addition, the PI controller meets the throughput constraint in cases where other approaches fail

    A Fully Integrated 32 nm MultiProbe for Dynamic PVT Measurements within Complex Digital SoC

    Get PDF
    International audienceThis paper deals with the design of a compact Process, Voltage and Temperature (PVT) probe architecture, in 32nm CMOS technology. The sensor, hereafter named MultiProbe, is composed of 7 different ring oscillators, each one presenting a particular sensitivity to PVT variations. The architecture allows MultiProbes to be chained, so that a single controller is needed. Simulation results exhibit the non-linearity behavior of the ring oscillators under temperature and voltage variations as well as their particular behavior. Due to their small size, the Multiprobe blocks can be easily integrated within a complex digital SoC architecture

    Long range LiDAR characterisation for obstacle detection for use by the visually impaired and blind

    Get PDF
    Obstacle detection and avoidance is a huge area of interest for autonomous vehicles and, as such, has become an important research topic. Detecting and identifying obstacles enables navigation through an ever changing environment. This work looks at the technology used in self-driving vehicles and examines whether the same technology could be used to aid in navigation for visually impaired and blind (VIB) people. For autonomous vehicles, obstacle detection relies on different sensor modalities to provide information on the vehicles surroundings. A combination of the same sensors placed on a white cane could be used to perform free-space assessment over the whole height of the user and provide additional environmental information not available from the cane alone. This provides its own challenges and advantages. The speeds are much slower when dealing with pedestrians and scanning can be achieved by the movement of the cane. However, the weight and size must be significantly reduced. The full system will be integrated into a smart cane and will consist of four main sensors as well as range sensors. The aim of this work is to report on the characterisation of a long range LiDAR (up to 10m) that will be integrated into a smart white cane developed as part of the INSPEX H2020 project

    A Survey on Low-Power Techniques with Emerging Technologies: From Devices to Systems

    Get PDF
    Nowadays, power consumption is one of the main limitations of electronic systems. In this context, novel and emerging devices provide us with new opportunities to keep the trend to low-power design. In this survey paper, we present a transversal survey on energy efficient techniques ranging from devices to architectures. The actual trends of device research, with fully-depleted planar devices, tri-gate geometries and gate-all-around structures, allows us to reach an increasingly higher level of performance while reducing the associated power. In addition, beyond the simple device properties enhancements, emerging devices also lead to innovations at circuit and architectural levels. In particular, devices whose properties can be tuned through additional terminals enable a fine and dynamic control of device threshold. They also enable designers to realize logic gates and to implement power-related techniques in a compact way unreachable to standard technologies. These innovations reduce the power consumption at the gate level and unlock new means of actuation in architectural solutions like adaptive voltage and frequency scaling

    INSPEX: Make environment perception available as a portable system

    Get PDF
    International audienceObstacle avoidance systems for autonomous vehicles combine multiple sensing technologies (i.e. LiDAR, Radar, Ultrasound and Visual) to detect different types of obstacles across the full range of lighting and weather conditions. Sensor data are fused with vehicle orientation (obtained for instance from an Inertial Measurement Unit and/or compass) and navigation subsystems. Power hungry, they require powerful computational capability, which limits their use to high-end vehicles and robots. 2 INSPEX ambition The H2020 INSPEX project plans to make obstacle detection capabilities available as a personal portable multi-sensors, miniaturised, low power device. This device will detect, locate and warn of obstacles under different environmental conditions, in indoor/outdoor environments, with static and mobile obstacles. Potential applications range from safer human navigation in reduced visibility conditions (e.g. for first responders and fire brigades), small robot/drone obstacle avoidance systems to navigation for the visually and mobility impaired people. As primary demonstrator (Fig.1), we will plug the INSPEX device on a white cane (see Fig. 1) for Visually Impaired and Blind (VIB) people to detect obstacle over the whole person height, provide audio feedback about harmful obstacles, improve their mobility confidence and reduce injuries, especially at waist and head levels [1]. The device will offer a "safety cocoon" to its user

    INSPEX: design and integration of a portable/wearable smart spatial exploration system

    Get PDF
    The INSPEX H2020 project main objective is to integrate automotive-equivalent spatial exploration and obstacle detection functionalities into a portable/wearable multi-sensor, miniaturised, low power device. The INSPEX system will detect and localise in real-time static and mobile obstacles under various environmental conditions in 3D. Potential applications range from safer human navigation in reduced visibility, small robot/drone obstacle avoidance systems to navigation for the visually/mobility impaired, this latter being the primary use-case considered in the project
    corecore